

Résumé Semaine 10

Tolérancement dimensionnel III

Dr. S. Soubielle

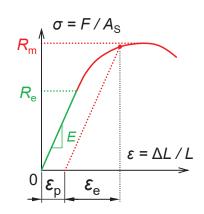
S. Soubielle

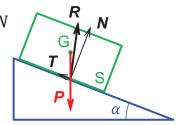
Résumé semaine 10

ME-101 / ME-106 - Construction Mécanique I

Comportement mécanique des solides

Loi de déformation des matériaux


- Caractérisée par essai de traction
- Matériaux usuels en constr. méca.
 → comportement élasto-plastique
- Domaine élastique $\rightarrow \sigma = E \cdot \varepsilon$



- Défini par les lois de Coulomb
 - Si pas de mvt \rightarrow $T_{\max} = \tan(\delta_0) \cdot N = \mu_0 \cdot N$
 - Si glissement \rightarrow $T = \tan(\delta) \cdot N = \mu \cdot N$

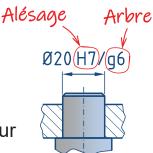
- Caractérise le frottement sec

- Valable si pas de phénomènes visqueux
- Largement utilisé en construction méca. pour prédire les forces

Fonctions d'assemblage et tolérances

Fonctions d'assemblage

 J_{min} et J_{max} doivent être adaptés aux dimensions nominales pour obtenir le caractère souhaité de l'ajustement



- Impact sur les écarts limites supérieur et inférieur

Système ISO de tolérances

- Écriture codifiée des int. de tolérance
- Ajustement ISO → même comportement quelle que soit la dim. nominale de l'interface
- Valeurs numériques des écarts limites supérieur et inférieur → données par deux tableaux
- Ajustements ISO usuels : à alésage normal (et à arbre normal)

S. Soubielle

3

Résumé semaine 10

ME-101 / ME-106 — Construction Mécanique I

Quiz TurningPoint (me101)

Systèmes mécaniques II

Sous-ensembles mobiles, mécanismes,

Liaisons et schémas cinématiques

Dr. S. Soubielle

S. Soubielle

Systèmes mécaniques II

ME-101 / ME-106 - Construction Mécanique I

Dans ce cours, nous allons...

... Caractériser ce qu'est un mécanisme

- ... Constitué de plusieurs sous-ensembles de pièces
- ... Mobiles les uns par rapport aux autres
- ... Liés entre eux par des interfaces de contact
- ... Permettant d'empêcher certaines composantes de mouvement

... Présenter le concept de liaison mécanique

- ... Résultant de la combinaison des interfaces de contact
- ... Concept de degré de liberté et de degré de liaison
- ... Présentation des 11 liaisons cinématiques normalisées
- ... Présentation du schéma cinématique

Sous-ensembles de pièces et mécanisme

Sous-ensemble mobile (SEM)

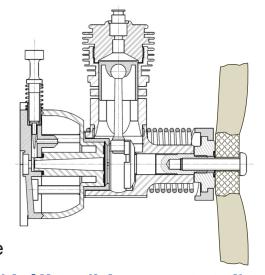
- Ensemble de pièces en assemblage statique les unes par rapport aux autres
- Peut être mobile ou non par rapport au référentiel
- P.ex. : SEM bloc moteur

Si plusieurs SEM

- Mouvements (rotations et/ou translations) rendus possibles entre les SEM
- Certaines composantes de mvt sont empêchées / bloquées
 - P.ex.: SEM arbre de sortie vs. SEM bloc moteur

Systèmes mécaniques II

ME-101 / ME-106 - Construction Mécanique I


Blocage de mouvement (1/2)

Par serrage

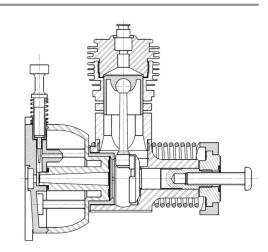
- → Forces de frottement statique
- → Blocage total = « liaison statique » entre les pièces / SEM

Par obstacle

- → Présence d'un obstacle physique
- → Blocage partiel ou total : certaines composantes de mouvement peuvent être rendues encore possible

Ex. de la liaison arbre de sortie / hélice (blocage total)

- Blocage axial par obstacle → embase à gauche / vis à droite
- Blocage en rotation par serrage de la vis
 → Force normale au contact → transmission du couple


Blocage de mouvement (2/2)

Interfaces de contact usuelles

- Contact plan / plan
- Contact cylindre / cylindre

Combinaison de plusieurs interfaces de contact

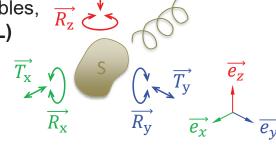
- → On ne garde que les composantes de mouvement souhaitées
- → La solution obtenue est appelée « liaison mécanique »

Exemple du micro-moteur

- SEM arbre vs. SEM bloc moteur → 1 cyl. / cyl. + 2 plan / plan
 - → 1 rotation possible (axiale)
- Piston vs. SEM bloc moteur
- \rightarrow 1 cyl./cyl. \rightarrow 1 rot. + 1 trans.

S. Soubielle 5

Systèmes mécaniques II


ME-101 / ME-106 - Construction Mécanique I

Liaison mécanique & cinématique (1/3)

Solide libre dans l'espace

6 composantes de mouvement possibles, appelées « degrés de liberté » (DDL)

- 3 translations \rightarrow T_x , T_y , T_z
- 3 rotations $\rightarrow R_x, R_y, R$

Liaison mécanique

- Chaque interface de contact empêche un ou plusieurs DDL
- Chaque DDL empêché est appelé « degré de liaison »

Les 11 liaisons cinématiques

- 11 combinaisons de DDL possibles
- Chaque liaison cinématique possède un symbole normalisé

Liaison mécanique & cinématique (2/3)

Les 11 liaisons mécaniques (1/2)

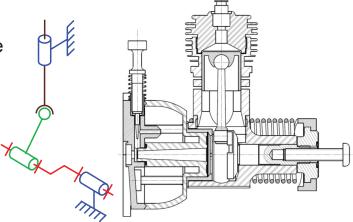
Désignation	Représentation schématisée	Image animée	Degrés de liberté	Degrés de liaison
Pivot (d'axe $\overrightarrow{e_x}$)			R_{x}	$T_x = T_y = T_z = 0$ $R_y = R_z = 0$
Glissière (de direction $\overrightarrow{e_x}$)	$rac{1}{e_x}$		T_{x}	$T_{y} = T_{z} = 0$ $R_{x} = R_{y} = R_{z} = 0$
Pivot glissant (d'axe $\overrightarrow{e_x}$)			T _x R _x	$T_{y} = T_{z} = 0$ $R_{y} = R_{z} = 0$
Hélicoïdale (d'axe $\overline{e_x}$ et de pas P)	$rac{1}{e_x}$		R_x (=2 $\pi/P.T_x$)	$T_x = P/2\pi.R_x$ $T_y = T_z = 0$ $R_y = R_z = 0$
Appui plan (de normale $\overrightarrow{e_z}$)	$\overrightarrow{e_z}$		T_{x} , T_{y} R_{z}	$T_z = 0$ $R_x = R_y = 0$

S. Soubielle

Systèmes mécaniques II

ME-101 / ME-106 - Construction Mécanique I

Liaison mécanique & cinématique (3/3)


• Les 11 liaisons mécaniques (2/2)

Désignation	Représentation schématisée	Image animée	Degrés de liberté	Degrés de liaison
Appui ponctuel (de normale $\overrightarrow{e_z}$)	$\overrightarrow{e_z}$		T_x, T_y R_x, R_y, R_z	$T_z = 0$
Linéaire rectiligne (d'axe $\overrightarrow{e_x}$ et de normale $\overrightarrow{e_z}$)	$\overrightarrow{e_z}$ $\overrightarrow{e_x}$ $\overrightarrow{e_z}$		T_{x} , T_{y} R_{x} , R_{z}	$T_z = 0$ $R_y = 0$
Linéaire annulaire (de direction $\overrightarrow{e_x}$)	$rac{1}{e_x}$		T_{x} R_{x} , R_{y} , R_{z}	$T_{y} = 0$ $T_{z} = 0$
Rotule	ợ		R_x , R_y , R_z	$T_{x} = 0$ $T_{y} = 0$ $T_{z} = 0$
Rotule à doigt (rotation selon $\overrightarrow{e_y}$ bloquée)	$\overrightarrow{e_z}$ $\overrightarrow{e_x}$	Z Y	R_{x} , R_{z}	$\frac{T_x = T_y = T_z = 0}{R_y = 0}$

Schéma cinématique (1/2)

Principe

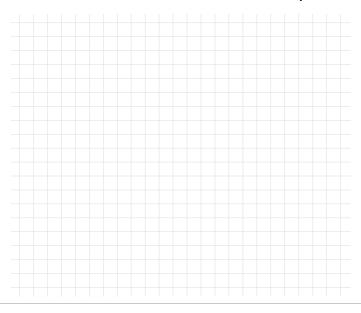
- Représentation simplifiée du mécanisme
- 1 couleur par SEM
- Symboles normalisés pour les liaisons mécaniques entre SEM

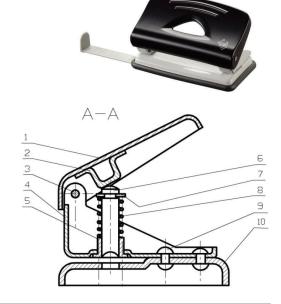
Intérêt & utilisation

- Visualisation simplifiée des SEM et des mvts possibles
 - → Outil de compréhension d'un mécanisme existant
 - → Outil de conceptualisation lors d'une conception mécanique
- Paramétrisation des variables cinématiques
 - → Outil d'analyse / de contrôle des mouvements

S. Soubielle 9

Systèmes mécaniques II


ME-101 / ME-106 - Construction Mécanique I


Schéma cinématique (2/2)

Exercice d'application – perforatrice de bureau

- 1. Identifier les SEM, puis les liaisons cinématiques entre les SEM
- 2. Tracer le schéma cinématique

Références normatives principales

ISO 3952 Schémas cinématiques — Symboles graphiques

S. Soubielle 11

Systèmes mécaniques II

ME-101 / ME-106 — Construction Mécanique I

Notes personnelles

Assemblages boulonnés l

Principe, filetage métrique, procédés de fabrication du filetage

Dr. S. Soubielle

S. Soubielle

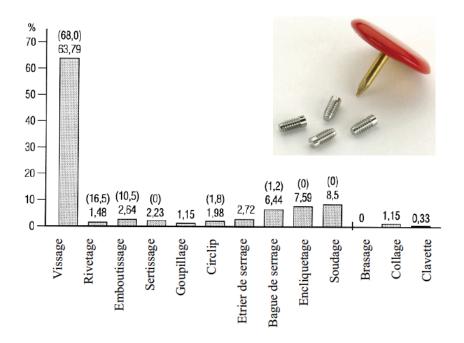
Assemblages boulonnés I

ME-101 / ME-106 — Construction Mécanique I

Dans ce cours, nous allons...

... Décrire la fonction d'un assemblage boulonné

- ... Sollicitations mécaniques dans les pièces mises en jeu
- ... Fonctions et caractéristiques du filetage


... Définir les filetages normalisés métriques

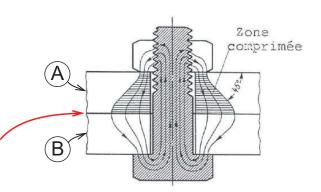
- ... À pas normal et à pas fin
- ... Caractéristiques géométriques et cas d'emploi

... Décrire les procédés de fabrication du filetage

- ... Pour un filetage extérieur et intérieur
- ... Et en déduire les limitations géométriques

Pourquoi les assemblages boulonnés?

S. Soubielle 3

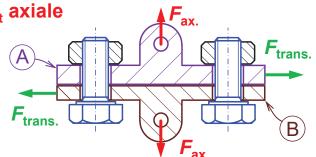

Assemblages boulonnés I

ME-101 / ME-106 - Construction Mécanique I

Fonction = maintien en position

1. Précontrainte de serrage

- → Vis sollicitées en traction
- → Pièces en sandwich sollicitées en compression
- → Création d'une force d'appui N au contact entre A et B


2. Application d'une charge extérieure $F_{\rm ext}$

 \rightarrow Maintien par obstacle si F_{ext} axiale

(Condition: F_{ax} tq N > 0)

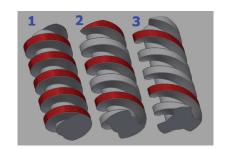
→ Maintien par frottement statique si F_{ext} transverse

(Condition : $F_{\text{trans.}} < \mu_0 \cdot N$)

Fonctions et caractéristiques du filetage

Fonctions du filetage

Mettre en contact les pièces à assembler


Rotation → translation (filetage hélicoïdal)

Assurer et maintenir la précontrainte de serrage dans l'AB

Frottements statiques → précontrainte conservée après serrage

Caractéristiques du filetage

- Forme du filet
- Nombre de filets
- Pas = distance entre deux filets successifs
- Sens du filetage

Filet « à gauche »

Filet « à droite »

© Guide des Sciences et Technologies Industrielle, J.-L. Fanchon ↑

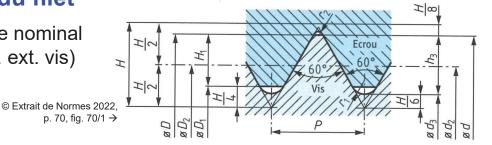
S. Soubielle 5

Assemblages boulonnés I

ME-101 / ME-106 - Construction Mécanique I

Filetage normalisé métrique (1/2)

Caractéristiques générales



Sens d'hélice à droite, par défaut

· Géométrie du filet

d : diamètre nominal (= diam. ext. vis)

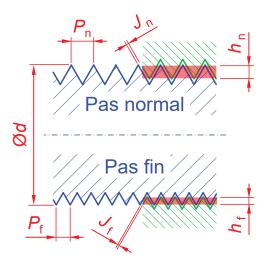
P : pas

Divers

- Taille de pas → dépend du diamètre nominal d
- Existe en deux séries : pas normal et pas fin

Filetage normalisé métrique (2/2)

· Séries à pas normal et à pas fin


- P dépend du diamètre d
 - $\rightarrow P_f < P_n$ (pour un même d)
- Hauteur d'interface

$$\rightarrow h_f < h_n$$

Jeu de fonctionnement

$$\rightarrow J_f < J_n$$

→ Tolérances de fabrication + fines si filetage à pas fin

Cas d'emploi

- Pas normal à utiliser par défaut, car + résistant & cher à fabriquer
- Pas fin → Vissage dans tube à paroi mince
 - → Vis de réglage

S. Soubielle 7

Assemblages boulonnés I

ME-101 / ME-106 - Construction Mécanique I

Filetage métrique à pas normal

Notation = M « d »

Par ex.: M4, M12, M30

- Tailles (ISO 262) →
- Section résistante A_S
 - Section par laquelle transite la force de traction dans la vis
 - À utiliser pour calculer la contrainte de traction

$$\sigma = \frac{F}{A_{\rm S}}$$

© Extrait de Normes 2022, p. 70, Tableau 70/1, partiel →

Diamètre nominal	Pas	Section résistante de la vis	Avant-trou de
d = D	P		taraudage
M1	0,25	A _S ¹) mm ² 0,460	D _B ²)
M1,2	0,25	0,732	0,75 0,95
M1,6 M2	0,35	1,27	1,25
M2,5	0,4 0,45	2,07 3,39	1,6 2,05
M3 M4	0,5 0,7	5,03 8,78	2,5 3,3
M5	0,8	14,2	4,2
M6 M8	1 1,25	20,1 36.6	5 6,75
M10	1,5	58,0	8,5
M12 M16	1,75 2	84,3 157	10,25 14
M20	2,5	245	17,5
M24	3	353	21
M27 M30	3,5	459 561	24 26,5
M33 M36	3,5 4	694 817	29,5 32
M42 M48	4, 5	1121 1473	37,5
M56	5,5	2030	43 50,5
M64	6	2675	58

Filetage métrique à pas fin

Notation = M « d » × « P »

- M5×0,5, M8×1, M42×3
- Suffixe « -LH » si pas à gauche
- Tailles (ISO 262) →

Section résistante A_S

- Section par laquelle transite la force de traction dans la vis
- À utiliser pour calculer la contrainte de traction

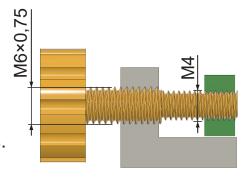
$$\sigma = \frac{F}{A_{\rm S}}$$

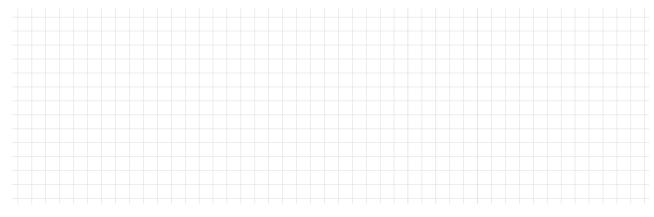
Diamètre nominal	Pas	Section résistante de la vis	Avant-trou de taraudage
d = D	P	A _S 1) mm ²	$D_{\rm B}^{2}$)
M4	0,5	9,79	3,5
M5	0,5	16,1	4,5
M6	0,75	22,0	5,25
M8	1	39,2	7
M10	1,25	61,2	8,75
M12	1,5	88,1	10,5
M16	1,5	167	14,5
M20	1,5	272	18,5
M24	2	384	22
M30	2	621	28
M36	3	865	33
M42	3	1206	39
M48	3	1604	45
M56	4	2144	52
M64	4	2851	60
M72	4	3658	68
M80	4	4566	76
M90	4	5840	86
M100	4	7280	96

© Extrait de Normes 2022, p. 71, Tableau 71/1, partiel

S. Soubielle

Assemblages boulonnés I


ME-101 / ME-106 - Construction Mécanique I


Exercice d'application

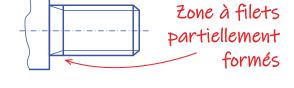
Soit la vis différentielle ci-contre, équipée d'un premier filetage en taille M6×0,75 et d'un deuxième en taille M4.

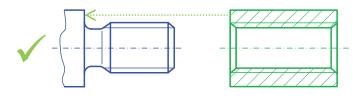
Calculer le déplacement de l'écrou (pièce verte) pour chaque tour de vis.

Fabrication et design du filetage (1/3)

Filetage extérieur (1/2)

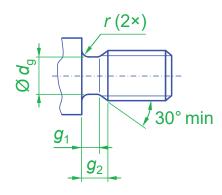
Modes d'obtention


- → Filière + porte-filière (opération manuelle)
- → Burin de filetage (tournage)



Limitation géométrique

- Impossible de fileter jusqu'à l'épaulement
- Solution
 usinage d'une gorge
 en fond de filetage


S. Soubielle 11

Assemblages boulonnés I

ME-101 / ME-106 - Construction Mécanique I

Fabrication et design du filetage (2/3)

Dimensions de la gorge pour filetage extérieur

© Extrait de Normes 2022, p. 71, Tableau 79/1, partiel →

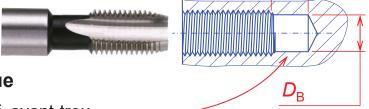
Filetage diamètre nominal (filetage à pas normal)	Gorge pour filetage					
d	d _g	g_1 min.		g_2 max.		r≈
	h13 ⁵)	normal	court	normal	court	
M1	d - 0,4	0,55	0,25	0,9	0,6	0,12
M1,2	d - 0,4	0,55	0,25	0,9	0,6	0,12
M1,6	d - 0,6	0,7	0,4	1,2	0,9	0,16
M2	d - 0,7	0,8	0,5	1,4	1	0,2
M2,5	d - 0,7	1	0,5	1,6	1,1	0,2
M3	d - 0,8	1,1	0,5	1,75	1,25	0,2
M4	d - 1,1	1,5	0,8	2,45	1,75	0,4
M5	d - 1,3	1,7	0,9	2,8	2 2,5	0,4
M6	d - 1,6	2,1	1,1	3,5		0,6
M8	d - 2	2,7	1,5	4,4	3,2	0,6
M10	d - 2,3	3,2	1,8	5,2	3,8	0,8
M12	d - 2,6	3,9	2,1	6,1	4,3	1
M16	d-3	4,5	2,5	7	5	1
M20	d-3,6	5,6	3,2	8,7	6,3	1,2
M24	d-4,4	6,7	3,7	10,5	7,5	1,6
M27	d-4,4	6,7	3,7	10,5	7,5	1,6

Fabrication et design du filetage (3/3)

Filetage intérieur / taraudage

- Modes d'obtention

- → Taraud + « tourne-à-gauche » (opération manuelle)
- → Fraise à tarauder (tournage ou fraisage)



≈ 1×D_R

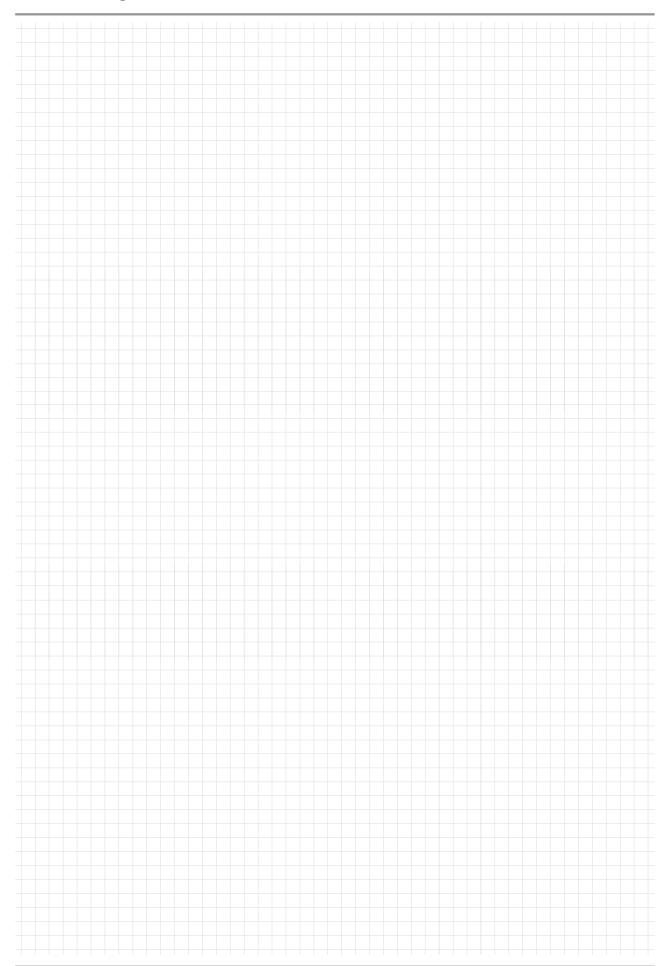
- Gamme de fabrication

- 1. Perçage d'avant-trou à D_B tel que $D_B = d P$
- 2. Taraudage

Limitation géométrique

- Prof. taraudage < prof. avant-trou
- Projet BA2 \rightarrow Prof. taraudage = prof. avant-trou $D_{\rm B}$

S. Soubielle 13


Assemblages boulonnés I

ME-101 / ME-106 - Construction Mécanique I

Références normatives principales

ISO 68-1	Filetages ISO pour usages généraux — Profil de base — Partie 1: Filetages métriques
ISO 261	Filetages métriques ISO pour usages généraux — Vue d'ensemble
ISO/DIS 262	Filetages métriques ISO pour usages généraux — Sélection de dimensions pour la boulonnerie
ISO 898-1	Caractéristiques mécaniques des éléments de fixation en acier au carbone et en acier allié — Partie 1: Vis, goujons et tiges filetées de classes de qualité spécifiées — Filetages à pas gros et filetages à pas fin
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps

Notes personnelles

